Policy

Agricultural and renewable energy policies often operate in silos and can sometimes be in conflict. 24 Policies related to renewables in agriculture target a wide range of technologies, including renewable electricity generation for agricultural processes, solar water pumping, renewable fuels to run agricultural equipment, renewable heat for food processing and solar thermal energy to heat greenhouses. Net zero pathways and the push for decarbonisation have driven how policies are designed in the agri-energy space, along with energy efficiency measures, especially in food processing and the cold chain. 25 Water availability also is essential in the design of evidence-based policies (policies based on and informed by rigorously established evidence for the agri-water-food nexus). 26

Overall, policies aimed at the uptake of renewables in agriculture have increased. 27 In some cases, governments have used renewable energy mandates and targets to require that a certain share of energy used in the sector be generated from renewables. In 2022, India announced a target for zero diesel use in agriculture by 2024, with the goal of replacing diesel generators for pumping and food processing, as well as other diesel uses, with renewables. 28 As of the end of 2022, four countries – Bangladesh, India, the Republic of Korea and Zambia – had targets for renewables in agriculture. 29

The most popular policies for renewables in the agriculture sector are financial incentives such as subsidies and tax credits, in addition to funding programmes. By the end of 2022, a total of 25 national and sub-national jurisdictions had renewable energy policies for agriculture, led by efforts in the United States, India and Bangladesh. 30 (See Figure 15) This total included 14 national and 2 sub-national jurisdictions (the US states of Massachusetts and Missouri) with fiscal and financial policies for the use of renewables in agriculture, as well as 7 national and 2 sub-national jurisdictions (the Indian states of Maharashtra and Punjab) with other related enabling policies and programmes. 31

India has been a leader in the development of renewable energy policies tailored to the agricultural sector. The government's PM-KUSUM scheme, launched in 2019 and extended to March 2026, has encouraged farmers to switch from fossil fuel-based irrigation systems to grid-connected solar pumps by offering a performance-based incentive for exporting pump-generated electricity to the grid. 32 In November 2022, India also announced that it would extend its National Bioenergy Programme to 2026 and include a biogas programme, a waste-to-energy programme that covers industrial waste, and a biomass programme to support co-generation in industries and the manufacturing of briquettes and pellets. 33 In addition, India released a draft framework for distributed renewable energy applications, including addressing the energy needs of the agri-food chain. 34

Greece revised its grid distribution to allocate up to 30% of its grid availability to net metering for farmers. 35 Türkiye revised its 2019-2023 strategic plan to ease the rules for small-scale solar systems, including exempting solar irrigation projects from a permitting requirement for systems under 125 square metres. 36 In Nigeria, the Rural Electrification Agency's Energising Agriculture Program promotes renewables for irrigation and also links mini-grids and agricultural production. 37

FIGURE 15.

National and Sub-National Renewable Energy Targets and Fiscal/Financial Policies in the Agriculture Sector, as of End-2022

FIGURE 15.

Source: See endnote 30 for this module.

The debate over competing land uses for agriculture and solar generation has eased as countries increasingly develop regulatory frameworks for agrivoltaics i . 38 In 2022, Italy launched a USD 1.5 billion scheme for agrivoltaics using funding from the EU Recovery and Resilience Facility. 39 Both Italy and France also released new standards for agrivoltaics, and an Italian court ruled that regional authorities could not deny permits to solar projects on agricultural land without considering the potential for agrivoltaics. 40 The United States allocated a USD 8 million grant for the development of agrivoltaics. 41

Germany has modified its regulations to encompass agrivoltaics and the use of renewables in agriculture. 42 In January 2022, it passed amendments to no longer exclude agrivoltaics from EU subsidies, given that at least 85% of the land area used for agrivoltaics can be cultivated. 43 Amendments to the German Renewable Energy Source Act also recognise dual land-use solar projects, including agrivoltaics and floating photovoltaics (PV), and support the construction of solar sites to restore degraded moorlands used for agriculture. 44 Starting in 2022, innovation tenders under the Act included provisions for agrivoltaics. 45

In contrast, the United Kingdom has backed down from agrivoltaics by planning to reclassify the majority of agricultural land so that solar energy development is no longer allowed, with the view that such activity impedes food production objectives. 46

Footnotes

i Agrivoltaics entails the use of agricultural land simultaneously for crop production or grazing and for electricity generation from solar PV, thus increasing land-use efficiency. Among other benefits, agrivoltaics can reduce the need for irrigation by retaining moisture in soils and protecting soils from hail, frost and drought. See endnote 38 for this module.

  1. World Bank, “Agriculture, Forestry, and Fishing, Value Added (% of GDP),” https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS, accessed December 16, 2022.1
  2. International Labour Organisation (ILO), “Employment Rate in Agriculture, World,” Data Finder – World Employment and Social Outlook, https://www.ilo.org/wesodata/?chart=Z2VuZGVyPVsiVG90YWwiXSZ1bml0PSJSYXRlIiZzZWN0b3I9WyJBZ3JpY3VsdHVyZSJdJnllYXJGcm9tPTIwMTAmaW5jb21lPVtdJmluZGljYXRvcj1bImVtcGxveW1lbnREaXN0cmlidXRpb24iXSZzdGF0dXM9W10mcmVnaW9uPVsiV29ybGQiXSZjb3VudHJ5PVtdJndvcmtpbmdQb3ZlcnR5PVtdJnllYXJUbz0yMDIzJnZpZXdGb3JtYXQ9IkNoYXJ0IiZhZ2U9WyJBZ2UxNXBsdXMiXSZsYW5ndWFnZT0iZW4i, accessed December 16, 2022.2
  3. ILO, “Employment Rate in Agriculture, by Region,” Data Finder – World Employment and Social Outlook, https://www.ilo.org/wesodata/chart/J45qDX-tp, accessed December 16, 2022.3
  4. Ibid.4
  5. International Energy Agency (IEA), “World Energy Balances 2020: Extended Energy Balances,” August 2022, https://www.iea.org/data-and-statistics/data-product/world-energy-balances, all rights reserved, as modified by the Renewable Energy Policy Network for the 21st Century (REN21).5
  6. Based on IEA data, op. cit. note 5.6
  7. European Commission, Directorate-General for Maritime Affairs and Fisheries, “Energy Efficiency,” https://stecf.jrc.ec.europa.eu/web/ee, accessed December 23, 2022.7
  8. European Commission, Directorate-General for Maritime Affairs and Fisheries, “2022 Annual Economic Report on the EU Fishing Fleet: The Sector Is Affected by High Fuel Prices in the Wake of the War in Ukraine,” October 11, 2022, https://oceans-and-fisheries.ec.europa.eu/news/2022-annual-economic-report-eu-fishing-fleet-sector-affected-high-fuel-prices-wake-war-ukraine-2022-10-11_en.8
  9. Food and Agriculture Organization of the United Nations (FAO), “FAOSTAT,” https://www.fao.org/faostat/en/#data/GN, accessed January 10, 2023.9
  10. Ibid. The dimensionless conversion factors used are: GWP-CH4 = 21 and GWP-N2O = 310 (100-year time horizon global warming potential), from Intergovernmental Panel on Climate Change, “SAR Climate Change 1995: The Science of Climate Change,” 1995, Table 4, https://www.ipcc.ch/report/ar2/wg1.10
  11. Ibid.11
  12. Figure 14 from IEA data, op. cit. note 5.12
  13. Ibid.13
  14. Ibid.14
  15. Ibid.15
  16. Ibid.16
  17. International Renewable Energy Agency (IRENA) and FAO, “Renewable Energy for Agri-Food Systems: Towards the Sustainable Development Goals and the Paris Agreement,” 2021, http://www.fao.org/3/cb7433en/cb7433en.pdf.17
  18. R. Van Anrooy et al., “Review of the Techno-Economic Performance of the Main Global Fishing Fleets,” FAO, 2021, https://www.fao.org/3/cb4900en/cb4900en.pdf. 18
  19. IRENA, “Renewable Energy for Agri-Food Systems: How Cross-Sector Partnerships Are Driving Action and Investments,” November 12, 2022, https://www.irena.org/News/articles/2022/Nov/Renewable-Energy-for-Agri-food-Systems.19
  20. IRENA and FAO, “Renewable Energy and Agri-Food Systems: Advancing Energy and Food Security Towards Sustainable Development Goals,” 2021, http://www.fao.org/3/cb7433en/cb7433en.pdf. 20
  21. Ibid..21
  22. Lighting Global, “Market Research on Productive Use Leveraging Solar Energy (PULSE),” September 23, 2019, https://www.lightingglobal.org/resource/pulse-market-opportunity.22
  23. IRENA, “Accelerating Geothermal Heat Adoption in the Agri-Food Sector,” January 2019, https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.23
  24. IRENA and FAO, op. cit. note 17.24
  25. European Environmental Bureau, “Beyond Net-Zero Emission in Agriculture: Creating an Enabling Climate Governance for Agriculture,” July 5, 2021, https://eeb.org/library/beyond-net-zero-emission-in-agriculture.25
  26. IRENA and FAO, op. cit. note 17. 26
  27. REN21 Policy Database. See Reference Table R4 in the GSR 2023 Data Pack, www.ren21.net/gsr2023-data-pack.27
  28. Mint, “Renewable Energy to Replace Diesel in Agriculture by 2024, Says Govt,” February 12, 2022, https://www.livemint.com/news/india/renewable-energy-to-replace-diesel-in-agriculture-by-2024-says-govt-11644592411948.html.28
  29. REN21 Policy Database, op. cit. note 27. 29
  30. Figure 15 from Ibid.30
  31. Ibid.31
  32. Outlook, “Government Extends PM-KUSUM Scheme Till March 2026 as Covid Affects Implementation,” February 2, 2023, https://www.outlookindia.com/business/government-extends-pm-kusum-scheme-till-march-2026-as-covid-affects-implementation-news-258895; N. Pasupalati et al., “Learnings for Tamil Nadu from Grid-Connected Agricultural Solar Photovoltaic Schemes in India,” World Resources Institute, February 15, 2022, https://www.wri.org/research/learnings-tamil-nadu-grid-connected-agricultural-solar-photovoltaic-schemes-india.32
  33. A. Kumar and D. Mohapatra, “Fuelling India's Future with Bioenergy,” PwC, January 25, 2023, https://www.pwc.in/research-and-insights-hub/fuelling-indias-future-with-bioenergy.html.33
  34. L. Concessao and H. Meenawat, “Distributed Renewable Energy Applications Have a New and Encouraging Framework; Applying It on Ground Is Crucial for Success,” ET EnergyWorld, May 9, 2022, https://energy.economictimes.indiatimes.com/news/renewable/opinion-distributed-renewable-energy-applications-have-a-new-and-encouraging-framework-applying-it-on-ground-is-crucial-for-success/91434372; IRENA and FAO, op. cit. note 20.34
  35. Fraunhofer Institute for Solar Energy Systems (ISE), “Agrivoltaics: Opportunities for Agriculture and the Energy Transition,” April 2022, https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/APV-Guideline.pdf; H. Aposporis, “Greece Passes Renewables Law Targeting 15 GW in New Capacity by 2030,” Balkan Green Energy News, June 30, 2022, https://balkangreenenergynews.com/greece-passes-renewables-law-targeting-15-gw-in-new-capacity-by-2030.35
  36. A. Bhambhani, “Turkey Facilitates Solar for Irrigation Systems,” Taiyang News, August 3, 2022, https://taiyangnews.info/markets/turkey-facilitates-solar-for-irrigation-systems.36
  37. Rockefeller Foundation, “REA Launches New Program to Boost GDP, Accelerate Renewable Energy and Unlock Agricultural Productivity in Nigeria,” March 31, 2022, https://www.rockefellerfoundation.org/news/rea-launches-new-program-to-boost-gdp-accelerate-renewable-energy-and-unlock-agricultural-productivity-in-nigeria.37
  38. Fraunhofer ISE, “Agrivoltaics,” https://www.ise.fraunhofer.de/en/key-topics/integrated-photovoltaics/agrivoltaics.html, accessed January 3, 2023. .38
  39. J. Jacobo, “Italy to Allocate US$1.5 Billion for 375MW of Agrivoltaics,” PV Tech, August 29, 2022, https://www.pv-tech.org/italy-to-allocate-us1-5-billion-for-375mw-of-agrivoltaics.39
  40. Italian Ministry for Ecological Transition, “Guidelines for Agrivoltaics,” June 2022, https://www.mase.gov.it/sites/default/files/archivio/allegati/PNRR/linee_guida_impianti_agrivoltaici.pdf; E. Bellini, “France Defines Standards for Agrivoltaics,” pv magazine, April 28, 2022, https://www.pv-magazine.com/2022/04/28/france-defines-standards-for-agrivoltaics; E. Bellini, “Historical Court Ruling for Agrivoltaics in Italy,” pv magazine, June 27, 2022, https://www.pv-magazine.com/2022/06/27/historical-court-ruling-for-agrivoltaics-in-italy.40
  41. A. Fischer, “US Government Allocates $8 Million to Support Agrivoltaics,” pv magazine, December 15, 2022, https://www.pv-magazine.com/2022/12/15/us-government-allocates-8-million-to-support-agrivoltaics.41
  42. Fraunhofer ISE, op. cit. note 38; US National Renewable Energy Laboratory (NREL), “Agrivoltaics,” https://www.nrel.gov/solar/market-research-analysis/agrivoltaics.html, accessed January 3, 2023; NREL, “Benefits of Agrivoltaics Across the Food-Energy-Water Nexus,” September 11, 2019, https://www.nrel.gov/news/program/2019/benefits-of-agrivoltaics-across-the-food-energy-water-nexus.html. 42
  43. Fraunhofer ISE, op. cit. note 35.43
  44. J. Dahm and N. Kurmayer, “Germany to Boost Renewables in Agriculture, Link Moorlands with Solar Panels,” Euractiv, February 11, 2022, https://www.euractiv.com/section/agriculture-food/news/germany-to-boost-renewables-in-agriculture-link-moorlands-with-solar-panels.44
  45. Franhaufer ISE, op. cit. note 35. 45
  46. H. Horton, “Ministers Hope to Ban Solar Projects from Most English Farms,” The Guardian (UK), October 10, 2022, https://www.theguardian.com/environment/2022/oct/10/ministers-hope-to-ban-solar-projects-from-most-english-farms.46
  47. IRENA and FAO, op. cit. note 20.47
  48. Ibid.48
  49. Ibid.49
  50. Acumen, “Acumen Launches a $25 Million Investment Initiative to Power Livelihoods with Clean Energy,” July 12, 2022, https://acumen.org/blog/acumen-launches-a-25-million-investment-initiative-to-power-livelihoods-with-clean-energy.50
  51. F. Agbejule, M. Mattern and J. Mensah, “Savings at the Pump: Financing Solar Irrigation to Support Rural Women,” CGAP, March 22, 2022, https://www.cgap.org/blog/savings-pump-financing-solar-irrigation-to-support-rural-women.51
  52. Interreg Europe, “Romania: New Financing for Renewables in Agriculture,” April 15, 2021, https://projects2014-2020.interregeurope.eu/agrores/news/news-article/11786/romania-new-financing-for-renewables-in-agriculture.52
  53. M. Raji, personal communication with REN21, February 1, 2023.53
  54. US Department of Agriculture, Rural Development, “Rural Energy for America Program Renewable Energy Systems & Energy Efficiency Improvement Guaranteed Loans & Grants,” January 5, 2015, https://www.rd.usda.gov/programs-services/energy-programs/rural-energy-america-program-renewable-energy-systems-energy-efficiency-improvement-guaranteed-loans.54
  55. IRENA, op. cit. note 19. 55
  56. A. Rosell, “Zero CAPEX Solar Heat for Mexican Industry,” Solar Thermal World, March 18, 2022, https://solarthermalworld.org/news/zero-capex-solar-heat-for-mexican-industry.56
  57. A. Rosell, “Solar Heat for Multinational Agribusinesses Under Way,” Solar Thermal World, November 10, 2022, https://solarthermalworld.org/news/solar-heat-for-multinational-agribusinesses-under-way. 57
  58. B. Epp, “10 MW Solar Plant Heats Air for Malting Plant in France,” Solar Thermal World, September 28, 2021, https://solarthermalworld.org/news/10-mw-solar-plant-heats-air-malting-plant-france.58
  59. B. Epp, “Innovation Fund Approves EUR 4.5 Million for Croatian SHIP Plant,” Solar Thermal World, September 16, 2021, https://solarthermalworld.org/news/innovation-fund-approves-eur-45-million-croatian-ship-plant.59
  60. A. Rosell, “Heat Purchase Agreements on the Rise in Spain,” Solar Thermal World, August 10, 2022, https://solarthermalworld.org/news/heat-purchase-agreements-on-the-rise-in-spain.60
  61. S. Schindele et al., “Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications,” Applied Energy, Vol. 265, 1 May 2020, p. 114737, https://www.sciencedirect.com/science/article/pii/S030626192030249X.61
  62. Blind Creek Solar Farm, “About Blind Creek Solar Farm,” https://www.blindcreeksolarfarm.com.au/about-blind-creek-solar-farm, accessed February 12, 2023; Clean Energy Finance Corporation, “NSW Regenerative Agriculture Boosted with Solar and Storage,” July 2022, https://www.cefc.com.au/where-we-invest/case-studies/nsw-regenerative-agriculture-boosted-with-solar-and-storage.62
  63. M. Van Nguyen et al., “Uses of Geothermal Energy in Food and Agriculture: Opportunities for Developing Countries,” FAO, January 1, 2014, https://www.fao.org/publications/card/fr/c/045ca001-4849-43b7-8dc6-e99635ddb5ea.63
  64. R. McRae, “$10m Investment in Geothermal Direct Use in Balikesir, Sindirgi, Turkey,” ThinkGeoEnergy, December 8, 2021, https://www.thinkgeoenergy.com/10m-investment-in-geothermal-direct-use-in-balikesir-sindirgi-turkey; C. Cariaga, “Grant Awarded for Geothermal Greenhouse Installation in Eskisehir, Turkiye,” ThinkGeoEnergy, October 14, 2022, https://www.thinkgeoenergy.com/grant-awarded-for-geothermal-greenhouse-installation-in-eskisehir-turkiye.64
  65. US Department of Energy, Office of Scientific and Technical Information, “2013 Market Trends Report,” January 1, 2014, https://www.osti.gov/servlets/purl/1220825. 65
  66. Energy Sector Management Assistance Program (ESMAP), “Off-Grid Solar Market Trends Report 2022: Outlook,” October 17, 2022, https://esmap.org/Off-Grid_Solar_Market_Trends_Report_2022_Outlook.66
  67. IRENA, “Off-Grid Renewable Energy Statistics 2022,” December 2022, https://www.irena.org/Publications/2022/Dec/Off-grid-renewable-energy-statistics-2022.67
  68. Green Climate Fund, “Hydro-Agricultural Development with Smart Agriculture Practices Resilient to Climate Change in Niger,” October 7, 2021, https://www.greenclimate.fund/project/fp176.68
  69. ESMAP, op. cit. note 66; IRENA and FAO, op. cit. note 20. 69
  70. Efficiency for Access, “Solar Appliance Technology Brief: Walk-in Cold Rooms,” July 2021, https://storage.googleapis.com/e4a-website-assets/EforA_Solar_Technology_Brief_WalkInColdRooms_July-2021.pdf; ESMAP, op. cit. note 66. Snapshot: India based on the following sources: B. Moushumi, “Indian Farmers Turn to Solar-Powered Fridges to Reduce Food Waste,” Scroll.in, December 5, 2022, https://scroll.in/article/1038916/indian-farmers-turn-to-solar-powered-fridges-to-reduce-food-waste; “Food Wastage in India: A Concern,” Eastern Mirror, October 25, 2022, https://easternmirrornagaland.com/food-wastage-in-india-a-concern; F. Birol and A. Kant, “India's Clean Energy Transition Is Rapidly Underway, Benefiting the Entire World,” IEA, January 10, 2022, https://www.iea.org/commentaries/india-s-clean-energy-transition-is-rapidly-underway-benefiting-the-entire-world; H. Lalramenga, “Deputy CM Hmalaknain Khawzawlah Solar Cold Storage Bun Dt. 21.12.2021,” DC Khawzawl, December 22, 2021, https://dckhawzawl.mizoram.gov.in/post/deputy-cm-hmalaknain-khawzawlah-solar-cold-storage-bun.70
  71. ESMAP, op. cit. note 66.71
  72. Based on IEA data, op. cit. note 5.72
  73. Fraunhofer ISE, op. cit. note 35.73
  74. Fraunhofer ISE, op. cit. note 38.74
  75. Fraunhofer ISE, op. cit. note 35.75
  76. FAO, “The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation,” 2022, http://www.fao.org/3/cc0461en/cc0461en.pdf. 76
  77. CLIENT II, “SHRIMPS – Solar-Aquaculture Habitats as Resource-Efficient and Integrated Multilayer Production Systems,” https://www.bmbf-client.de/en/projects/shrimps, accessed January 4, 2023.77
  78. Ibid.78
  79. B. Santos, “Floating Solar Tech for Aquaculture,” pv magazine, January 4, 2023, https://www.pv-magazine.com/2023/01/04/floating-solar-tech-for-aquaculture.79
  80. IRENA, “Accelerating Geothermal Heat Adoption in the Agri-Food Sector,” January 2019, https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.80
  81. Ibid. 81
  82. Ibid; FAO, op. cit. note 76.82
  83. IRENA, op. cit. note 80.83
  84. IRENA and FAO, op. cit. note 20.84
  85. Ibid.85
  86. FAO, op. cit. note 76.86
  87. Based on IEA data, op. cit. note 5.87
  88. Ibid.88
  89. IRENA and FAO, op. cit. note 20.89
  90. Ibid.90
  91. Ibid.91
  92. Ibid.92
  93. Green Climate Fund, “Climate Resilient Fishery Initiative for Livelihood Improvement in the Gambia (PROREFISH Gambia),” July 20, 2022, https://www.greenclimate.fund/project/fp188.93
  94. R. Van Anrooy et al., op. cit. note 18.94
  95. C. Carletto, “Better Data, Higher Impact: Improving Agricultural Data Systems for Societal Change,” European Review of Agricultural Economics, Vol. 48, No. 4, September 2021, 719-740, https://doi.org/10.1093/erae/jbab030. 95
  96. D. Mohapatra et al., “Decentralised Renewable Energy Innovations to Boost Agri-Sector Productivity & Address Global Food System Challenges,” Alliance for Rural Electrification, January 2021, https://www.ruralelec.org/publications/decentralised-renewable-energy-innovations-boost-agri-sector-productivity-address.96