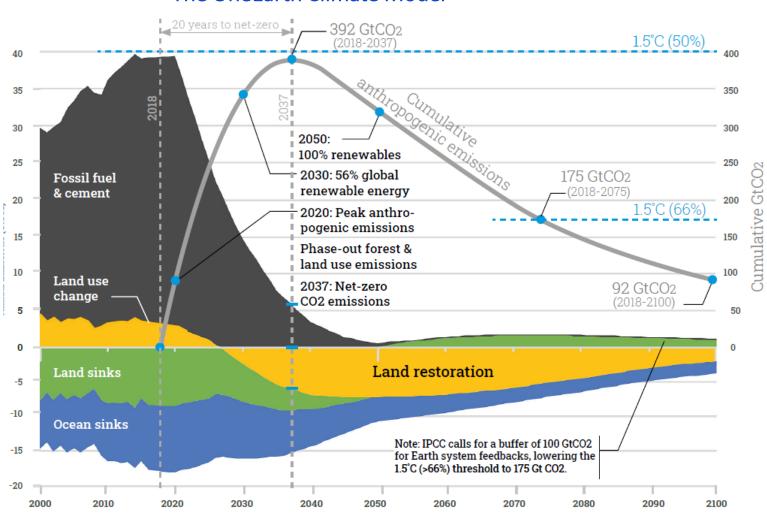
## RENdez-vous Southeast Asia: From Fossil Fuels to Renewables Now: Strategising Energy Transition - REN21

Prepared for REN21

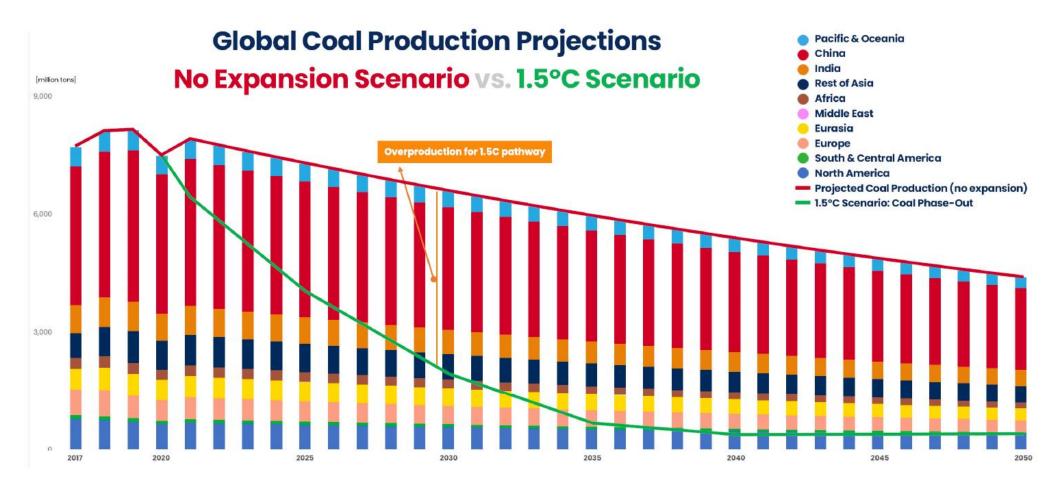
Institute for Sustainable Futures

22<sup>nd</sup> July 2021 Sydney/Australia


Associate Prof. Dr. Sven Teske



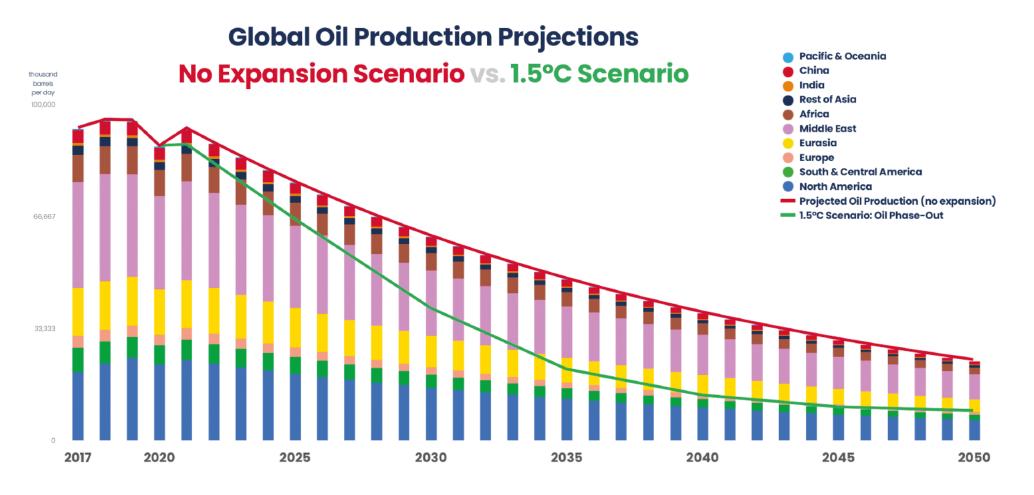





#### The OneEarth Climate Model






## The FOSSIL FUEL EXIT STRATEGY: An orderly wind down of coal, oil and gas to meet the Paris Agreement

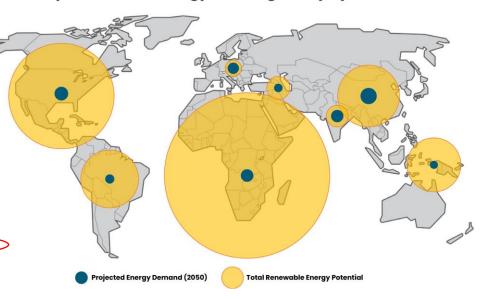


Coal production 2017-2050 – No Expansion projection (red line) vs. the pathway required to limit warming to 1.5°C (green line)



The FOSSIL FUEL EXIT STRATEGY: An orderly wind down of coal, oil and gas to meet the Paris Agreement




Crude Oil production 2017-2050 – No Expansion projection (red line) vs. the pathway required to limit warming to 1.5°C (green line)



## The FOSSIL FUEL EXIT STRATEGY: There's more than enough Renewable Energy for Economic Development

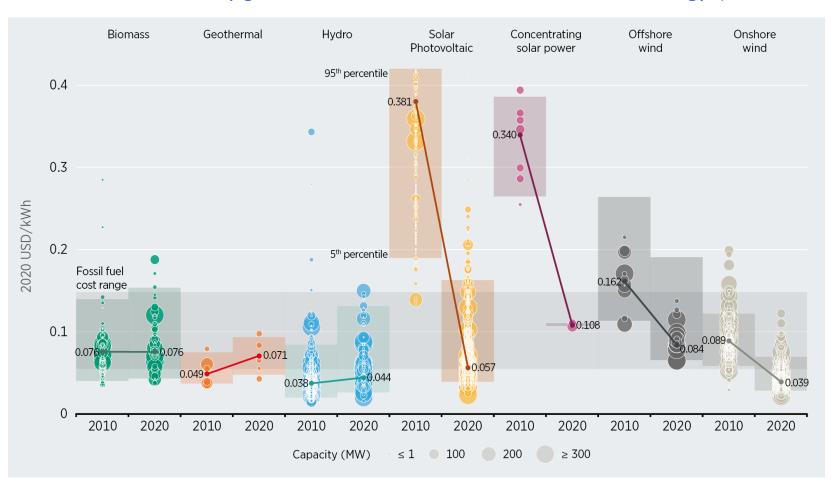
| Region           | Solar                                                    |                            |                              | Wind                                                     |                            |                             | Total                                             |                                             |                               |   |
|------------------|----------------------------------------------------------|----------------------------|------------------------------|----------------------------------------------------------|----------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------|---|
|                  | Potential<br>availability<br>for utility-<br>scale [km²] | Space<br>Potential<br>[GW] | Solar<br>Generation<br>[TWh] | Potential<br>availability<br>for utility-<br>scale [km²] | Space<br>Potential<br>[GW] | Wind<br>Generation<br>[TWh] | Generation Potential Solar + Onshore Wind [TWh/a] | Current<br>Electricity<br>Demand<br>[TWh/a] | Potential<br>Supply<br>Factor |   |
| North<br>America | 13,094,767                                               | 327,369                    | 589,264                      | 12,710,832                                               | 141,873                    | 347,589                     | 936,854                                           | 5,293                                       | 177                           |   |
| Latin<br>America | 5,946,569                                                | 148,664                    | 208,130                      | 5,947,135                                                | 29,736                     | 72,853                      | 280,983                                           | 1,280                                       | 220                           |   |
| Europe           | 49,440,273                                               | 1,236,011                  | 1,421,413                    | 45,242,245                                               | 226,944                    | 486,568                     | 1,907,981                                         | 3,554                                       | 537                           |   |
| Middle<br>East   | 48,865,697                                               | 1,221,647                  | 2,198,965                    | 44,814,466                                               | 224,072                    | 548,976                     | 2,747,941                                         | 1,046                                       | 2,626                         |   |
| Africa           | 47,887,663                                               | 1,197,196                  | 2,394,392                    | 44,720,505                                               | 223,601                    | 559,003                     | 2,953,395                                         | 781                                         | 3,782                         |   |
| Asia             | 10,005,058                                               | 250,131                    | 479,501                      | 5,777,229                                                | 28,886                     | 84,260                      | 563,762                                           | 1,362                                       | 414                           | _ |
| India            | 8,242,512                                                | 206,065                    | 412,130                      | 4,829,287                                                | 24,146                     | 61,283                      | 473,413                                           | 1,383                                       | 342                           |   |
| China            | 7,076,636                                                | 176,917                    | 270,860                      | 3,569,615                                                | 17,848                     | 50,438                      | 321,298                                           | 5,883                                       | 55                            |   |
| Pacific          | 4,967,112                                                | 124,177                    | 173,848                      | 4,889,446                                                | 24,446                     | 71,945                      | 245,792                                           | 1,948                                       | 126                           |   |
| Global           | 195,526,287                                              | 4,888,177                  | 7,795,665                    | 172,500,760                                              | 941,552                    | 2,445,023                   | 10,240,687                                        | 24,262                                      | 422                           |   |

The world has significantly more renewable energy potential than is needed to provide 100% energy access globally by 2050





## **Key Advantages of Renewable Energies**


- Reliable generation of domestic electricity, heat and renewable fuels
- Independence from global fuel prices
- Stable electricity generation costs no fuel needed
   therefore electricity price can be calculated over 10 years +
- Local workforce needed for operation & maintenance
- No combustion process means no air pollution
- Electric drives are silent less noise in cities

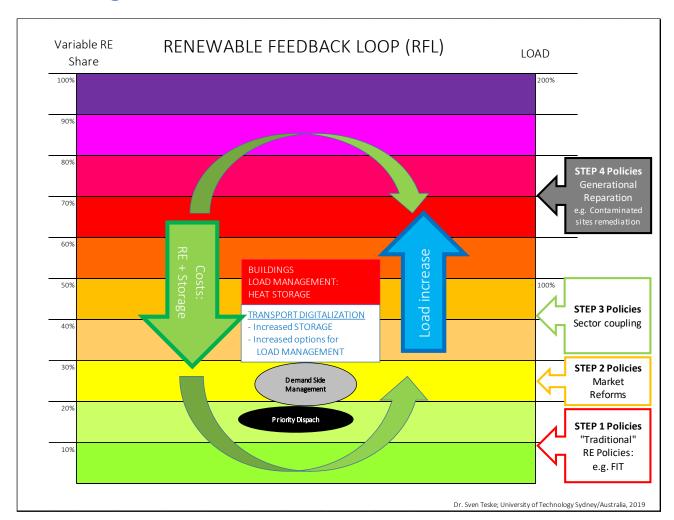
....and



## **Key Advantages of Renewable Energies**

### ....renewable electricity generation is now the most economic technology. (IRENA 2021)






Policies & Experiences - Renewable Energies

The "Renewable Feedback Loop"

#### Policy Requirements for Renewables

- Reliable (don't change it after every election)
- System Overarching Policies
  - Infrastructure (grids)
  - Generation (all RE to achieve variety)
  - System Services (storage & generation management)
  - Sector coupling





# Thank you & More information

Associate Prof Dr Sven Teske

## Global Report Open Access Book for free download at Springer Data on website:



© 2019 Open Access

#### Achieving the Paris Climate Agreement Goals

Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C

Editors: Teske, Sven (Ed.)

Presents robustly modeled scenarios to achieve 100% renewable energy by 2050  $\,$ 

#### Institute for Sustainable Futures

University of Technology Sydney

Level 10, Building 10, 235 Jones Street, Ultimo, Sydney, NSW 2007 (PO Box 123) AUSTRALIA

T +61 2 9514 4786 M +61 415 07 255 7

Mail <u>sven.teske@uts.edu.au</u>

Skype teske\_sven





I acknowledge the traditional owners of the land on which I live and work and pay my respects to elders past and present.

#### Fossil Fuel Exit Strategy / June 2021

